SYNTHESIS OF POLYSUBSTITUTED CIS- AND TRANS-2,5-DIHYDRONICOTINONIFRILES

Stefan K. Robev Department of Pharmacology,Faculty of Medicine Sofia 1431, Bulgaria

Summary: A method for synthesis of cis- and trans- polysubstituted 2,5-dihydronicotinonitriles III from N.N-disubstituted arylacetamidines I and ylidenemalononitriles II at room temperature in THF is reported.

Derivatives of 1,4-dihydropyridine are well studied whereas 2,5-dihydropyridines are almost completely unknown. In the present communication we report the reaction of N,N-disubstituted arylacetamidines I and ylidenemalononitriles II at room temperature in tetrahydrofuran leading to the corresponding 6-(N-alkyl-N-aryl)-amino-4-amino-3-cyano-2,5-diaryl-2,5-dihydropyridines III which we have found to exist in stable cis- and trans- forms

The process goes through N-addition of I to II and a Thorpe cyclisation to III. The structure of III was ascribed on the basis of elemental microanalysis, spectral date and chemical behaviour: on boiling for 40-60 hours in toluene with palladised charcoal III underwent aromatisation giving the corresponding 6-(N-alkyl-N-aryl)-4-amino-3-cyano-2,5-diarylpyridines IV ⁽¹⁾.

A model compound of 1V was synthesised from N-methyl-N-phenyl-phenylacetamidine and ethoxymethylenemalononitrile via N-methyl-N-phenyl-N'-(2,2-dicyanovinvl)-phenvlacetamidine V (2) which on boiling in quinoline was converted into 4-amino-3-cyano-6-(N-methyl-N-phenyl)-amino-5-phenylpyridine VI (3)

C₂H₅OCH=C(CN)₂

(5)

Table 1

	^R 1	^R 2	^R 3	^R 4	Cis-III mp C	Trans-III mp C	Total yield % (cis/trans
a	с ₆ н ₅	^с 6 ^н 5	C ₆ H ₅	с ₂ н ₅	235	156	63(15:13)
b	^C 6 ^H 5	^C 6 ^H 5	^C 6 ^H 5	CH3	237	157	6 8(15:10)
с	2-CH306H4	⁰ 6 ^H 5	²⁻⁰ 2 ^H 5 ⁰⁰ 6 ^H 4	^C 2 ^H 5	179	166	72(26:23)
d	^С 6 ^Н 5	C6 ^H 5	^{4-C} 6 ^H 5 ^C 6 ^H 4	CH3	264	214	75(15:11)
е	2-CH ₃ C ₆ H ₄	^С 6 ^Н 5	2-CH30C6H4	^С 2 ^Н 5	221	213	65(20:23)
f	^C 6 ^H 5	4-0106H4	^C 6 ^H 5	^C 2 ^H 5	240	178	77(16:11)
g	^С 6 ^Н 5	4-CIC6 ^H 4	2,4-(CH ₃)2 ^C 6 ^H 3	^C 2 ^H 5	225	1 85	58(23:16)
h	^С 6 ^Н 5	4-CIC6 ^H 4	^{3,4-CH} 2 ⁰ 2 ⁰ 6 ^H 3	⁰ 2 ^H 5	235	152	80(12:15)
i	^C 6 ^H 5	4-CIC ₆ H ₄	4-CIC6H4	^C 2 ^H 5	233	215	73(18:14)
j	^C 6 ^H 5	^{1–C} 10 ^H 7	^с 6 ^н 5	⁰ 2 ^Н 5	241	211	65(19:16)
k	^С 6 ^Н 5	4-C1C6 ^H 4	4-isoPr-C6 ^H 4	^С 2 ^Н 5	198	182	54(23:19)

The comparison of the UV-spectra of both IV and VI showed close resemblance; on the other hand the UV-spectra of IV and VI are markedly different from the alternative 3-cyano-2,6-diaminated pyridines whose formation might

be conceivable if a C-addition of I to II takes place first (4).

All compounds of type III were isolated in cis- and trans- forms which proved to be easily separable by means of fractional recrystallisation.

The H-2/H-5 protons in trans-III present ¹H nmr absorption maxima at higher fields (IIIa, trans-, 3,25 3,55 ppm) compared with the absorption pattern of the corresponding protons in the cis-forms (IIIa,cis-, 4,13 4,20 ppm) which is to be related to the diamagnetic shielding effect of the aryl groups when they are trans- positioned. Cis-III are readily convertable to trans-III by means of short time heating with acetic acid in ethanol(1:1). Some of trans-III underwent aromatisation on melting but no direct aromatisation of cis-III could be demonstrated under similar conditions which is evidence in favor of a trans-dehydrogenation mechanism during the aromatisation process of the dihydropyridine derivatives III.

when reacted with formamide,III gave 4-amino-7-(N-alkyl-N-aryl)-amino-5,8-diaryl-5,8-dihydropyrido[4,3-d]pyrimidines VII

III

VII

In the course of our experiments with IIIf in boiling formamide we have isolated (according to the ¹H nmr data) only trans-VIIf irrespective whether the starting substance was cis- or trans-IIIf.

4-Amino-3-cyano-2,5-diphenyl-2,5-dihydro-6-(N-ethyl-N-phenyl)-aminopyridine <u>IIIa.</u> 2,38g(10 mmole) of N-ethyl-N-phenyl-phenylacetamidine Ia ⁽⁶⁾and 1,54 g (10 mmole) of benzylidenemalononitrile IIa⁽⁷⁾ were dissolved in 12 ml THF and the reaction mixture was left at room temperature for 3 hours. The formed crystalline precipitate was filtered and washed with ethanol. It melted \mathbf{at} 225-230°C and consisted mainly of cis IIIa (¹H nmr data showed cis-/trans- ratio to be 63:11). The filtrate was further treated with 5 ml 50% ethanol and after staying overnight an additional crop was collected with mp 145-155°C with cis-/trans- ratio 14:33.Cis-IIIa was purified by recrystallisation from acetonitrile and toluene.hp 234-235°C.UV(ethanol)247(4,30),337(3,94)lmax(log e nm; IR(nujol) 3460, 3330, 3215(NH), 2170(CH) cm⁻¹; ¹H nmr 1, 18(t, 3H, CH₃)3, 89(q, CH₂) 4,13 4,20(H-2,H-5)3,95(s,2H,exch,NH₂)6,50-7,40(m,15H,arom)ppm.Trans-IIIa melted at 154-156(ethanol).UV(ethanol)247(4,31)330(3,96)lmax(log e)nm;IR(nujol) 3475,3315,3210(NH),2170(CN) cm⁻¹;¹H nmr 1,20(t,3H,CH₃)3,25 3,33(H-2,H-5)3,92 (q,2H,CH₂)4,01(s,2H,exch,1H₂)6,50-7,40(m,15H,arom)ppm. Total yield 2,46g(63%). 4-Amino-5-(4-chlorophenyl)-5, o-dihydro-7-(N-ethyl-N-phenyl)-amino-8-phenylpyrido/4,3-d/pyrimidine,trans-VIIf;mp 297-299°C(DMF);UV(ethanol)249(4,28)276 (4,09)312(4,16)lmax(log e)nm;IR(nujol)3450,3315,3120(NH)cm⁻¹;¹H nmr 3,71 3,75 (H-5,H-8)4,92(s,2H exch,NH₂)6,75-7,50(m,14H,arom)8,37(s,1H,H-2)ppm.

REFERENCES AND NOTES

1. IVb: mp 182-184^oC(toluene/hexane);UV(ethanol)237(4,33)266sh(4,20)
347(4,26) lmax(log e)nm;IR(nujol) 3435,3290,3140(NH),2210(CN) cm⁻¹
IVh: mp 236-237^oC(acetonitrile); IVk: mp 218-220^oC(ethanol).
2. V: mp 116-118^oC(ethanol);UV(ethanol)342(4,30)lmax(log e)nm;IR(nujol)
2220(CN) cm⁻¹.

3. VI melted at 172-173^oC(toluene/hexane);UV(ethanol)243(4,26)266(4,20) 346(4,24)lmax(lo₅ e)nm;IR(nujol)3460,3360,3215(NH),2210(CN) cm⁻¹.

4. S.K.Robev, Heterocycles, (1980) in press.

5. Cis-III/trans-III ratio from ¹H nmr data (80 MHz, $\delta CDCl_{z}$).

N,N-Disubstituted arylacetamidines were synthesised by the method of
 P.Oxley, M.Partridge, W.Short, J.Chem.Soc.(1947)1110.
 A.J.Fatiady, Synthesis,(1978)178.

(Received in UK 11 March 1980)